Lorentzian Coxeter Groups and Boyd-Maxwell Ball Packings
نویسندگان
چکیده
In the recent study of infinite root systems, fractal patterns of ball packings were observed while visualizing roots in affine space. In fact, the observed fractals are exactly the ball packings described by Boyd and Maxwell. This correspondence is a corollary of a more fundamental result: given a geometric representation of a Coxeter group in Lorentz space, the set of limit directions of weights equals the set of limit roots. Résumé. Lors de la visualisation des systèmes de racines infinis dans l’espace affine, des formes fractales ressemblant à des empilements de sphères furent observées. En fait, ces fractales sont précisement les empilements de sphères décrits par Boyd et Maxwell. Cette correspondance est une conséquence d’un résultat plus fondamental: étant donné un groupe de Coxeter agissant sur un espace de Lorentz, l’ensemble des directions limites des poids égale l’ensemble des racines limites du système de racines correspondant.
منابع مشابه
Even More Infinite Ball Packings from Lorentzian Coxeter Systems
Boyd (1974) proposed a class of infinite ball packings that are generated by inversions. Later, Maxwell (1983) interpreted Boyd’s construction in terms of root systems in Lorentz spaces. In particular, he showed that the space-like weight vectors correspond to a ball packing if and only if the associated Coxeter graph is of “level 2”. In Maxwell’s work, the simple roots form a basis of the repr...
متن کاملThe Optimal Ball and Horoball Packings of the Coxeter Tilings in the Hyperbolic 3-space
In this paper I describe a method – based on the projective interpretation of the hyperbolic geometry – that determines the data and the density of the optimal ball and horoball packings of each well-known Coxeter tiling (Coxeter honeycomb) in the hyperbolic space H.
متن کاملThe Optimal Ball and Horoball Packings to the Coxeter Honeycombs in the Hyperbolic d-space
In a former paper [18] a method is described that determines the data and the density of the optimal ball or horoball packing to each Coxeter tiling in the hyperbolic 3-space. In this work we extend this procedure – based on the projective interpretation of the hyperbolic geometry – to higher dimensional Coxeter honeycombs in H, (d = 4, 5), and determine the metric data of their optimal ball an...
متن کاملLimit Roots of Lorentzian Coxeter Systems
A reflection in a real vector space equipped with a positive definite symmetric bilinear form is any automorphism that sends some nonzero vector v to its negative and pointwise fixes its orthogonal complement, and a finite reflection group is a discrete group generated by such transformations. We note two important classes of groups which occur as finite reflection groups: for a 2-dimensional v...
متن کامل2 9 Ju n 20 06 Reflection group of the quaternionic Lorentzian Leech lattice
We study a second example of the phenomenon studied in the article “The complex Lorentzian Leech lattice and the bimonster”. We find 14 roots in the automorphism group of the the quaternionic Lorentzian Leech lattice L that form the Coxeter diagram given by the incidence graph of projective plane over F2. We prove that the reflections in these 14 roots generate the automorphism group of L. The ...
متن کامل